首页> 外文OA文献 >Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy
【2h】

Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

机译:利用机载成像光谱法模拟高寒草原植物物种分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
机译:众所周知,使用机载成像光谱(AIS)进行遥感能够检索生态系统的基本光学特性。但是,这些特性对于预测植物物种分布的价值仍然不清楚。在这里,我们评估这些数据是否可以为地形变量增加价值,以预测法国和瑞士高山草原的植物分布。我们用高光谱和空间分辨率反射率数据拟合统计模型,并测试了对叶片叶绿素含量,叶片含水量和叶片面积指数敏感的四个光学指标。我们发现AIS数据具有中等附加值,可预测高山植物物种的分布。与预期相反,物种分布模型(SDM)之间的差异与它们的局部丰度或系统发育/功能相似性无关。此外,发现物种的光谱特征部分地是特定于地点的。我们讨论了基于AIS的SDM的当前限制,重点介绍了AIS数据的规模和信息内容的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号